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TRANSIENT FLOW PAST A CIRCULAR CYLINDER: 
A BENCHMARK SOLUTION 

MICHAEL S. ENGELMAN AND MOHAMMAD-ALI JAMNIA 
Fluid Dynamics International, Evanston, IL 60201, U.S.A. 

SUMMARY 
The simulation of the von Karman vortex street behind a circular cylinder has long been used as a 
benchmark problem to test the performance of numerical algorithms for solving the Navier-Stokes 
equations. It is particularly suited for comparing different numerical outflow boundary conditions since the 
computational domain must necessarily be terminated in the vortex street itself. This paper presents detailed 
numerical results of the flow past a cylinder at a Reynolds number of 100 on a very fine mesh which has been 
purposely designed to extend past the typically used dimensions. Hopefully, these results can form a basis of 
a benchmark solution for the comparison of the effects of different outflow boundary conditions. 
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INTRODUCTION 

The simulation of the von Karman vortex street behind a circular cylinder has been addressed by 
numerous authors using a wide range of numerical methods. The purpose of the study reported 
herein is to provide a benchmark solution for this problem which can provide a basis for 
comparison of outflow boundary conditions. This problem is a particularly challenging one for 
an outflow boundary condition since the computational domain must be terminated in an  area 
where the vortex street is fully developed. The outflow boundary condition should be such that it 
allows the vortices to leave the computational domain while not disturbing the vortex shedding 
occurring upstream. 

The problem considered here is the flow past a circular cylinder in a freestream at a Reynolds 
number of 100. Because only a finite computational domain can be employed for the numerical 
simulation, it is important to locate the inflow and far-field boundaries at sufficient distance such 
that the boundary conditions applied at these boundaries do not introduce significant effects into 
the main region of interest around and behind the cylinder. The inflow, top and bottom 
boundaries have been located eight cylinder diameters in front of, above and below the centre of 
the cylinder respectively. Similarly, in order to minimize the effects of the outflow boundary 
condition on the flow in the vicinity of the cylinder, the computational mesh has been extended 
25-2 (the extra 0.2 is to accommodate the quadratic finite elements employed) cylinder diameters 
downstream of the centre of the cylinder. 

The boundary conditions for the problem include an imposed value of 1.0 for the x-component 
of velocity at the inflow and at the top and bottom boundaries of the computational domain. At 
these boundaries the y-component of velocity was specified to be zero, i.e. tow tank boundary 
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conditions. The outflow boundary condition was the natural one that arises in the context of the 
finite element method applied to the Navier-Stokes equations. Since the Vzu form of the diffusion 
term was employed rather than the stress-divergence form, this boundary condition takes the 
form 

au aU 
a x  

- P +  p z = 0 ,  p-=O. 

Note that this boundary condition is applied in a weak sense rather than in a pointwise manner. 
The non-dimensional form of the Navier-Stokes equations was employed for the simulation. 

For an isothermal problem with a fixed geometry this results in the Reynolds number being the 
only non-dimensional parameter required; the Reynolds number is defined by Re = DU/v ,  where 
D is the diameter of the cylinder, U is the freestream velocity and v is the kinematic viscosity. Since 
both the diameter of the cylinder and the freestream velocity were set to unity, the kinematic 
viscosity was set to 0.01 to achieve the desired Reynolds number. 

NUMERICAL METHOD 

The numerical simulation described in this paper was performed using the FIDAP programme,' 
a general purpose programme for the simulation of incompressible flows which is based on a 
Galerkin finite element formulation. A complete description of the numerical techniques 
employed can be found in Reference l-only a brief overview of the particular approach 
employed for this simulation will be presented here. The primitive variable form of the 
Navier-Stokes equations was employed with a penalty function approach for the pressure. Nine- 
node quadrilateral finite elements were used with a biquadratic Lagrange interpolation function 
for the velocity and a linear polynomial approximation for the pressure; thus the velocity 
approximation is continuous between elements while the pressure approximation is discontinu- 
ous. The penalty approach was implemented using the consistent matrix approach described in 
Reference 2. The value of the penalty parameter was 

The transient time integration was performed using an implicit predictor-corrector finite 
difference scheme. The corrector step used the second-order-accurate and non-dissipative trap- 
ezoid rule while the predictor step was an Adams-Bashforth scheme. For efficiency and accuracy 
a variable-time-increment approach was employed with the time increment at each time step 
being determined by controlling the local time truncation error at each step. Complete details of 
the time integration scheme can be found in References 1 and 3. The local time truncation error 
tolerance used for the simulation was 0-0005, i.e. the local time truncation error between time 
steps was allowed to be no greater than 0*05%-a fairly tight tolerance. 

Because an implicit time integrator was used, a non-linear system of algebraic equations must 
be solved at each time step. A quasi-Newton non-linear iterative solver was used to solve this non- 
linear system (see Reference 4 for details on the quasi-Newton solver). This approach is more cost- 
effective than a full Newton-Raphson strategy since it requires the formation of only one 
Jacobian matrix (and the associated system of linear equations) per time step. Also, because a 
predictor-corrector scheme is being used, if the specified local time truncation error tolerance is 
small, then the predictor is sufficiently accurate that only a few iterations of the non-linear 
iterative solver are typically required. For the simulations described in this paper only one or at 
the most two iterations were required to obtain convergence at each time step. A convergence 
tolerance of 0.01 % on the normalized change in the solution vectors and a 0.01 % change in the 
normalized residual vector was used to terminate the non-linear iteration scheme at each time 
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step. The non-symmetric linear equation system that had to be solved at each time step was 
solved using Gaussian elimination with a profile (skyline) storage scheme.’ 

In addition to the primary velocity and pressure variables, a number of derived quantities were 
computed as part of the benchmark solution. The streamfunction was computed from a line 
integral of the velocity components taken between nodal points along elements edges-a 
procedure described in detail in Reference 1. All other derived quantities, e.g. vorticity, stresses, 
etc., required the computation of derivatives of the computed velocity solution. These derivatives 
were computed using the element polynomial basis functions in the usual manner. In order to 
maximize the accuracy, wherever possible these derivatives were evaluated at the 2 x 2 points of 
Gaussian quadrature within the element; these computed values were then projected to the corner 
nodes of the element and an area-weighted average computed in order to obtain a continuous 
field. For plotting purposes, midside node data were linearly interpolated from comer node data. 

COMPUTATIONAL MODELS 

In an effort to demonstrate that the reported solutions are converged in the mesh refinement 
sense, computations were performed on three meshes of increasing refinement. For discussion 
purposes these meshes will be referred to as the coarse, medium and fine mesh respectively- 
specific details for each mesh are provided in Table I. It should be noted that the ‘coarse’ mesh 
used in this study was significantly finer than other meshes used in previously reported 
simulations of the vortex-shedding problem.6* ’ 

For mesh generation purposes the computational domain was divided into a number of 
distinct regions: A square region, - 4 < x < 4, - 4 < y < 4, surrounding the cylinder; the regions 
upstream and downstream from this region; and the regions above and below the square region. 
The square region was meshed using a radial-type mesh graded inwards toward the cylinder with 
an average grading factor of 15, i.e. the ratio of the first element width to the last element width on 
a radial line segment was 15 (see Figure 1). The distance of the first node on the centreline 
downstream of the cylinder was 0-0359,0.0196 and 0.0160 for the coarse, medium and fine meshes 
respectively. From x = 4 to x = 25-2 the mesh was uniformly distributed. From y=4 to y = 8 and 
from y = - 4 to y = - 8 the mesh was graded with a grading factor of two. The mesh was similarly 
graded from x = - 4 to the inflow at x =- 8 with a grading factor of two. The computational 
meshes are shown in Figure 1. 

Since the ultimate purpose of this benchmark solution is to provide data for comparison of the 
efficacy of different numerical outflow boundary conditions, an additional mesh was generated. 
This mesh is identical to the fine mesh described above except that the computational domain 
and mesh is terminated at x=4; this will be referred to as the short mesh. This mesh may be 
considered as a means of evaluating the performance of the natural boundary conditions 
employed in this paper rather than as part of the benchmark solution. 

Table I. Mesh characteristics 

Number of Number of Width of Number of 
Mesh nodes elements first node equations 

~~ 

Coarse 6878 1672 0.0359 13090 
Medium 9716 2376 00196 18694 
Fine 14ooo 3436 00160 27102 
Short 71 10 1740 00160 13746 
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Figure 1. Different finite element meshes 

In order to reach the vortex-shedding regime, the following sequence of simulations was 
performed. First a steady state simulation was performed on the coarse mesh. This solution was 
then used as the initial flow field for a transient simulation of 150 time steps. Vortices began to 
shed after approximately 50 time steps and by time step 150 the periodic vortex street was well 
established. The variable time increment settled down to a constant increment of 0-269 after 100 
time steps. The flow field at time step 150 was then interpolated onto the medium and fine meshes 
and a transient simulation of 175 time steps performed for each of the three meshes (the 
simulation for the coarse mesh was simply restarted from the previous run). The results at the 
final time step of the fine mesh simulation were used on the truncated short mesh as the initial 
solution and a transient simulation of 175 time steps was performed. Each shedding cycle on the 
fine mesh required 22 times steps-time steps 25-175 were used for the results presented in this 
study. The time increment for these time steps was 0.269, 0-264,0*266 and 0.3344 for the coarse, 
medium, fine and short meshes respectively. 

RESULTS 

The results are presented in Figures 2-21. Figures 2-5 are time history plots of the x-component 
of velocity, y-component of velocity, pressure and vorticity respectively. The time histories a t  four 
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locations on the centreline (y=O) are reported: x =  1,4, 20 and 25.2 (the outflow)-these points 
are labelled A, B, C and D respectively on the time history plots. Time histories of the drag and lift 
coefficients are shown in Figures 6 and 7 respectively for each of the meshes. The start-up effect of 
using the fine mesh result to restart the short mesh simulation is clearly evident in the drag history 
plot. 

All the other results are the values of various quantities at a particular instant in the shedding 
cycle. By prior agreement this time, trcf, was chosen to be the instant when the y-component of 
velocity was changing from a negative value to a positive value (i.e. passing through zero from 
below) at the point x = 4 on the centreline. This time was determined for each mesh using the 
appropriate time history plot. As a time step did not exactly coincide with this time for any of the 
meshes, the solution at this time was interpolated using linear interpolation between the two 
bracketing time step solutions. For accuracy, this time was selected in the last full shedding cycle. 

In order to provide data for the evaluation of various boundary conditions, cross-channel 
profiles of a variety of quantities are plotted at x = 4  and 20 at the time tref. The quantities plotted 
are the x-component of velocity, y-component of velocity, au,/ax, au,,/dx, au,/ay, du,/ay, 
normal stress (- P +  2,du,/dx), tangential stress (p((du,/dy+ au,/ax)), pressure and vorticity in 
Figures 8-15 for the fine and short meshes. 

Figures 16-20 are contour plots (on the full domain) of the streamfunction, x-component of 
velocity, y-component of velocity, pressure and vorticity respectively at time trcf. Figure 21 is a 
'discrete dye plot'; this plot is the equivalent of flow visualization by the injection of dye into the 
flow stream. The dye was injected at the point (0.6, 0.75). 
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Figure 6. Comparison of drag coefficients for different meshes 
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Figure 9. u, and uy at x=20 for the fine mesh at rrcf 

(I- m x  

b) U,,, (Short Mesh) Vs. Y 

c) Uy,x (Fine Mesh) Vs. Y 
flo. ma.1 cylinder - 9 node f;n. m a h  - short 

- . ~ - . ( m m - I ( m m  lmmD .- l m m p  
I u.ID,UIC 

d) Uy,x (Short Mesh) Vs. Y 

Figure 10. us. I and uv.x evaluated at x = 4 at rrc, 



i 
b) U,,y (Short Mesh) V s .  Y 

s i m s  
& W I W  PLOT 

0 - DW" 

f l o w  post Cylindar - 9 node f i n e  m s h  

c) Uy,y (Fine Mesh) V s .  Y 
STREIS 

~ , &WARY *Lor flaw post cyl indcr - 9 node f ine  m s h  - short 

0 - ovm 
I 

d) Uy,y (Short Mesh) V s .  Y 

Figure 11.  u . , ~  and uy.y evaluated at x=4  at tre, 

I -I.mmo 

b) Uy,x (Fine Mesh) V s .  Y 

c) U x , y  (Fine Mesh) V s .  Y 
STIILLS 

-*I" PLOT 

Figure 12. u u ~ . ~ ,  u,,~ and uy,y evaluated at x=20 at tre, 



a) Normal Stress Plot (Fine Mesh) 
STRESS 

W A R T  PLOT 

,- .. -, - ? . - I mo ~;;5~~5~01 
I Cc04)1NITE I 3  I 6  Y 

b) Normal Stress Plot (Short Mesh) 

STRLSS 
BDUDM PLOT 

f l o w  post cylinder - 9 node f i n e  mesh 

Figure 13. Stresses at x=4 for fine and short meshes 

v C r n D I I M T E  

c) Tangential Stress Plot (Fine Mesh) 

-I - -. - - I Mom . - ~;;~,5,01 
Y CaXlDlNATf II 46 51 

d) Tangential Stress Plot (Short Mesh) 

a) Pressure Distribution (Fine Mesh) 
CD(XQlNATE YS 
"UIIIBLC PLOT 

0 0Sc.x 

H 
b) Pressure Distribution (Short Mesh) 

COLRDIWri "6 ~- , " U l I u I I E  PLOT 
flow post Cylinder - 9 code fine m e h  

n 
0 . m  , JL 

- 8 . m  4 m - I . -  I m . m 0 m 

d) Vorticity (Short Mesh) 
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Figure 16. Streamlines at trrf 
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Figure 18. u, contour lines at tref 
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Figure 19. Pressure distribution at trCf 
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Figure 21. Discrete dye path plot of the vortex shedding at tref 

Table 11. Summary of vortex-shedding results 
~~ ~ 

Mesh Period Strouhal no. Wavelength Vortex speed Average drag Peak-to-peak Peak-to-peak 
T D/r V L coefficient drag lift 

Coarse 583 0.172 5.43 0.926 1.405 0.02 15 0.7267 
Medium 581 0.172 5.3 1 0.9 12 1.410 0.0205 07267 
Fine 5.80 0.173 5.32 @915 1.411 0.0203 0.7267 
Short 6.2 1 0.161 - - 1.384 0.0270 0.7200 

A number of other quantities are of particular interest for the vortex-shedding problem. These 
include the period z for one shedding cycle (during which two vortices are shed, one from the top 
and one from the bottom), the Strouhal number S t = D f / V  (where f = l / z  is the shedding 
frequency), the wavelength 1, the vortex speed (1/z), the average and peak-to-peak values of the 
drag coefficient C ,  and the peak-to-peak value of the lift coefficient C,. These quantities were 
determined from visual examination of the various time history plots and are summarized in 
Table I1 for each mesh. 

DISCUSSION 

Visually, the results from the fine mesh are identical to those for the medium mesh, while the 
numerical results in Table I1 show less than a 0.3% variation in any quantity. Thus it is 
reasonable to conclude that the results on the fine mesh are essentially grid-converged. Although 
it would be desirable to use Richardson extrapolation to further verify grid convergence, the non- 
regular nature of the mesh employed as well as the variable-time-increment time integration 
technique used preclude such an analysis. 
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The natural boundary condition employed in this study effectively sets a pressure level of zero 
at the outflow. This is clearly seen when comparing the plots of quantities at the x = 4 location for 
the fine and short meshes. A fascinating result of this study is the qualitative agreement of the 
results on the fine and short meshes despite the significant difference in the various quantities at  
x =4 for these meshes. Although the quantitative comparison of the various results does show the 
shortcomings of the truncated computational domain, the fact that vortex shedding still occurs 
shows the effectiveness of the natural boundary condition that arises from the application of the 
finite element method. 

A disturbing feature of the results on the short mesh is the ‘noisy’ nature of many of the 
computed quantities at  the outflow boundary (x = 4) of this mesh. The source of this noise is not 
clear, although it is our belief that it is related to effects associated with the premature termination 
of the computational domain. 
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